Nuclear Physics from Lattice QCD

Kostas Orginos
William \&e Mary -- JLab

Collaborators

Un. of New Hampshire
Un. of Washington (Seattle) College of William and Mary
Un. of Barcelona
LLNL

Motivation-Overview

- Study Multi-hadron systems
- Applications:
- Nuclear physics ($\mathrm{A}=\mathbf{2}, 3,4 \ldots$)
- Spectroscopy (excited states, multi-quark hadrons etc.)
- Methodology: Use finite volume
- Extract scattering phase shifts
- Extract multi-hadron interaction properties
- Results and Conclusions

Charmonium Spectrum

PDG 2009

Hadron Scattering

- Scattering processes from Lattice QCD are not straight forward
- Miani-Testa no-go theorem ('90) [and C. Michael '89]
- Infinite Volume:

Euclidean

Minkowski

- Finite volume: discrete spectrum
- Avoids Miani-Testa no-go theorem [m. Luscher]

Scattering on the Lattice
 Luscher

Scattering amplitude:

$$
\begin{gathered}
A(p)=0 \\
A(p)=\frac{4 \pi}{m} \frac{1}{p \cot \delta-i p}
\end{gathered}
$$

At finite volume one can show:

$$
\Delta E_{n} \equiv E_{n}-2 m=2 \sqrt{p_{n}^{2}+m^{2}}-2 m
$$

P_{n} solutions of:

$$
p \cot \delta(p)=\frac{1}{\pi L} \mathbf{S}\left(\frac{p^{2} L^{2}}{4 \pi^{2}}\right) \quad \mathbf{S}(\eta) \equiv \sum_{\mathrm{j}}^{\mid \mathrm{j}<\Lambda} \frac{1}{|\mathbf{j}|^{2}-\eta}-4 \pi \Lambda
$$

Effective range expansion:

$$
p \cot \delta(p)=\frac{1}{a}+\frac{1}{2} r p^{2}+\ldots
$$

Luscher Formula

Energy level shift in finite volume:

$$
\Delta E_{n} \equiv E_{n}-2 m=2 \sqrt{p_{n}^{2}+m^{2}}-2 m
$$

p_{n} solutions of:

$$
\begin{array}{lr}
p \cot \delta(p)=\frac{1}{\pi L} \mathbf{S}\left(\frac{p^{2} L^{2}}{4 \pi^{2}}\right) & \mathbf{S}(\eta) \equiv \sum_{\mathbf{j}}^{|\mathrm{j}|<\Lambda} \frac{1}{|\mathbf{j}|^{2}-\eta}-4 \pi \Lambda \\
p_{n} \cot \delta\left(p_{n}\right)=\frac{1}{a}+\cdots & \frac{1}{a}=\frac{1}{\pi L} S\left(\frac{p_{0}^{2} L^{2}}{4 \pi^{2}}\right)+\cdots
\end{array}
$$

Expansion at p~0:

$$
\Delta E_{0}=-\frac{4 \pi a}{m L^{3}}\left[1+c_{1} \frac{a}{L}+c_{2}\left(\frac{a}{L}\right)^{2}\right]+\mathcal{O}\left(\frac{1}{L^{6}}\right)
$$

a is the scattering length
c_{1} and c_{2} are universal constants

Technicalities

- How well can we compute energy levels in LQCD?
- Ground state:
- Relatively easy for mesons
- Baryons are hard and get harder as their number grows
- Excited states are more demanding but methods do exist
- Theoretical background
- Two body problems are well understood [Lucher]
- Multi-mesons recently done
[Beane et.al. PRD76;074507, 2007, Detmold et.al. PRD77:057502,2008]
- Coupled channels: Works begin to appear [Lage et.al. arXiv:0905.0069]
- More than two baryons: Work in progress.... [Luu arXiv:0810.2331v1]
- Still a lot needs to be done!

I=2 Pion Scattering

SU(2) ChiPT

$$
m_{\pi} a_{2}=-\frac{m_{\pi}^{2}}{8 \pi f_{\pi}^{2}}\left[1+\frac{m_{\pi}^{2}}{16 \pi^{2} f_{\pi}^{2}}\left[3 \log \left(\frac{m_{\pi}^{2}}{f_{\pi}^{2}}\right)-1-l_{\pi \pi}\left(f_{\pi}\right)\right]\right]
$$

- Physical point -- Lighter three point fit:

$$
m_{\pi} \mathrm{a}_{2}=-0.04196(12)
$$

- Physical point -- Lighter two point fit:

$$
\mathrm{m}_{\pi} \mathrm{a}_{2}=-0.04223(28)
$$

- Physical point -- Quadratic fit (higher order): $\mathrm{m}_{\pi} \mathrm{a}_{2}=-0.0426(4)$

I=2 Pion Scattering

SU(2) ChiPT

$$
m_{\pi} a_{2}=-\frac{m_{\pi}^{2}}{8 \pi f_{\pi}^{2}}\left[1+\frac{m_{\pi}^{2}}{16 \pi^{2} f_{\pi}^{2}}\left[3 \log \left(\frac{m_{\pi}^{2}}{f_{\pi}^{2}}\right)-1-l_{\pi \pi}\left(f_{\pi}\right)\right]\right]
$$

- Physical point -- Lighter three point fit:

$$
m_{\pi} \mathrm{a}_{2}=-0.04196(12)
$$

- Physical point -- Lighter two point fit:

$$
\mathrm{m}_{\pi} \mathrm{a}_{2}=-0.04223(28)
$$

- Physical point -- Quadratic fit (higher order): $\mathrm{m}_{\pi} \mathrm{a}_{2}=-0.0426(4)$

I=2 Pion Scattering

SU(2) ChiPT

$$
m_{\pi} a_{2}=-\frac{m_{\pi}^{2}}{8 \pi f_{\pi}^{2}}\left[1+\frac{m_{\pi}^{2}}{16 \pi^{2} f_{\pi}^{2}}\left[3 \log \left(\frac{m_{\pi}^{2}}{f_{\pi}^{2}}\right)-1-l_{\pi \pi}\left(f_{\pi}\right)\right]\right]
$$

- Physical point -- Lighter three point fit: $\quad \mathrm{m}_{\pi} \mathrm{a}_{2}=-0.04196(12)$
- Physical point -- Lighter two point fit: $\quad \mathrm{m}_{\pi} \mathrm{a}_{2}=-0.04223(28)$
- Physical point -- Quadratic fit (higher order): $\mathrm{m}_{\pi} \mathrm{a}_{2}=-0.0426(4)$

I=2 Pion Scattering

SU(2) ChiPT

$$
m_{\pi} a_{2}=-\frac{m_{\pi}^{2}}{8 \pi f_{\pi}^{2}}\left[1+\frac{m_{\pi}^{2}}{16 \pi^{2} f_{\pi}^{2}}\left[3 \log \left(\frac{m_{\pi}^{2}}{f_{\pi}^{2}}\right)-1-l_{\pi \pi}\left(f_{\pi}\right)\right]\right]
$$

- Physical point -- Lighter three point fit:

$$
m_{\pi} \mathrm{a}_{2}=-0.04196(12)
$$

- Physical point -- Lighter two point fit:

$$
\mathrm{m}_{\pi} \mathrm{a}_{2}=-0.04223(28)
$$

- Physical point -- Quadratic fit (higher order): $\mathrm{m}_{\pi} \mathrm{a}_{2}=-0.0426(4)$

I=2 Pion Scattering

SU(2) ChiPT

$$
m_{\pi} a_{2}=-\frac{m_{\pi}^{2}}{8 \pi f_{\pi}^{2}}\left[1+\frac{m_{\pi}^{2}}{16 \pi^{2} f_{\pi}^{2}}\left[3 \log \left(\frac{m_{\pi}^{2}}{f_{\pi}^{2}}\right)-1-l_{\pi \pi}\left(f_{\pi}\right)\right]\right]
$$

- Physical point -- Lighter three point fit:

$$
m_{\pi} \mathrm{a}_{2}=-0.04196(12)
$$

- Physical point -- Lighter two point fit:

$$
\mathrm{m}_{\pi} \mathrm{a}_{2}=-0.04223(28)
$$

- Physical point -- Quadratic fit (higher order): $\mathrm{m}_{\pi} \mathrm{a}_{2}=-0.0426(4)$

World results on I=2 п-п scattering lengths

Three meson interaction

NPLQCD: Phys.Rev.D78 (054514,014507) 2008

- Three pion interaction is non-zero
- Three kaon interaction vanishes

Nucleon-Nucleon

NPLQCD: Phys.Rev.Lett. 972006

BBSvK: Beane Bedaque Savage van Kolck ‘02
W: Weinberg ‘ 90 ;Weingberg ' 91 ; Ordonez et.al ' 95

Fukugita et al. ‘95: Quenched heavy pions

Signal to Noise ratio for correlation functions (mesons)

$$
\begin{aligned}
& C(t)=\langle m(t) \bar{m}(0)\rangle \sim A e^{-M_{m} t} \\
& \operatorname{var}(C(t))=\langle m \bar{m}(t) m \bar{m}(0)\rangle \sim A e^{-2 M_{m} t}+B e^{-2 M_{\pi} t} \\
& \text { Sto } N=\frac{C(t)}{\sqrt{\operatorname{var}(C(t))}} \sim A e^{-\left(M_{m}-M_{\pi}\right) t}
\end{aligned}
$$

- For pseudo-scalar mesons the signal does not deteriorate at large time

Signal to Noise ratio for correlation functions (baryons)

$$
\begin{gathered}
C(t)=\langle N(t) \bar{N}(0)\rangle \sim E e^{-M_{N} t} \\
\operatorname{var}(C(t))=\langle N \bar{N}(t) N \bar{N}(0)\rangle \sim A e^{-2 M_{N} t}+B e^{-3 m_{\pi} t} \\
S t o N=\frac{C(t)}{\sqrt{\operatorname{var}(C(t))}}=\sim A e^{-\left(M_{N}-3 / 2 m_{\pi}\right) t}
\end{gathered}
$$

- The signal to noise ratio drops exponentially with time
- The signal to noise ratio drops exponentially with decreasing pion mass
- For two baryons: $\operatorname{StoN}(2 N)=\operatorname{StoN}(1 N)^{2}$

High Statistics runs

- Improved Wilson fermions on anisotropic lattices
- Single pion mass: 390 MeV
- Very high statistics ($\sim 300 \times 10^{3}$ correlators)
- Goals
- Get clean signals
- Investigate methods of extracting masses from correlation functions
- Check feasibility of 3 body calculations

Signal to Noise Ratio

- Exponential loss of signal at large time
- Slopes become larger as baryon number increases

Exponential Slope of the variance

$$
\operatorname{var} \sim C_{N} e^{-2 A M_{N} t}+C_{\pi} e^{-3 A M_{\pi} t}
$$

Energy Shifts

pion mass: 390 MeV

Scattering Lengths

pion mass: 390 MeV

Nucleon-Nucleon Interactions: Projected errors

- Errors on scattering nucleon-nucleon scattering length as function of computational resources
- Only cost for correlation function calculation presented
- Includes expected speedup from eigCG [Stathopoulos, KO 2007]

Summary

- Mesonic (pseudo-scalar) many body systems are successfully studied in LQCD
- Scattering lengths
- Three body interaction
- Baryons are hard
- Statistical noise require high statistics calculations
- Advent of peta-scale computing together with new algorithmic developments will provide interesting results over the next few years

