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Motivation-Overview

Study Multi-hadron systems

Applications:

Nuclear physics (A=2, 3, 4 ... )

Spectroscopy (excited states, multi-quark hadrons etc.)

Methodology: Use finite volume

Extract scattering phase shifts

Extract multi-hadron interaction properties

Results and Conclusions



Hadron Structure

QCD

Hadron 
Interactions



Charmonium Spectrum
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Hadron Scattering

• Scattering processes from Lattice QCD are not straight forward

• Miani-Testa no-go theorem (‘90)  [and C. Michael ‘89]

• Infinite Volume:                                                                     

Euclidean                                  Minkowski 

• Finite volume:    discrete spectrum

• Avoids Miani-Testa no-go theorem [M. Luscher]



Scattering on the Lattice

Scattering amplitude:

A(p) =
4π

m

1

p cotδ − i p

π/

p ! mπ =⇒

p
mπ

L = − C0 (N†N)2 − C2 (N†∇2N)(N†N) + h.c. + . . .

V (p) = C0 + C2 p2 + . . . ≡

A(p) = + + ...+

OCTP 6/2005 – p.13/30

domain-wall [22–25] propagators generated by LHPC 1 at the Thomas Jefferson National
Laboratory (JLab).

This paper is organized as follows. In Section II we discuss Lüscher’s finite-volume method
for extracting hadron-hadron scattering parameters from energy levels calculated on the
lattice. In Section III we describe the details of our mixed-action lattice QCD calculation.
We also discuss the relevant correlation functions and outline our fitting procedures. In
Section IV we present the results of our lattice calculation, and the analysis of the lattice
data with χ-PT. In Section V we conclude.

II. FINITE-VOLUME CALCULATION OF SCATTERING AMPLITUDES

The s-wave scattering amplitude for two particles below inelastic thresholds can be deter-
mined using Lüscher’s method [2], which entails a measurement of one or more energy levels
of the two-particle system in a finite volume. For two particles of identical mass, m, in
an s-wave, with zero total three momentum, and in a finite volume, the difference between
the energy levels and those of two non-interacting particles can be related to the inverse
scattering amplitude via the eigenvalue equation [2]

p cot δ(p) =
1

πL
S

(
p2L2

4π2

)

, (1)

where δ(p) is the elastic-scattering phase shift, and the regulated three-dimensional sum is

S ( η ) ≡
|j|<Λ∑

j

1

|j|2 − η
− 4πΛ . (2)

The sum in eq. (2) is over all triplets of integers j such that |j| < Λ and the limit Λ → ∞
is implicit [26]. This definition is equivalent to the analytic continuation of zeta-functions
presented by Lüscher [2]. In eq. (1), L is the length of the spatial dimension in a cubically-
symmetric lattice. The energy eigenvalue En and its deviation from twice the rest mass of
the particle, ∆En, are related to the center-of-mass momentum pn, a solution of eq. (1), by

∆En ≡ En − 2m = 2
√

p2
n + m2 − 2m . (3)

In the absence of interactions between the particles, |p cot δ| = ∞, and the energy levels
occur at momenta p = 2πj/L, corresponding to single-particle modes in a cubic cavity.
Expanding eq. (1) about zero momenta, p ∼ 0, one obtains the familiar relation 2

∆E0 = − 4πa

mL3

[

1 + c1
a

L
+ c2

(
a

L

)2
]

+ O
(

1

L6

)
, (4)

1 We thank the MILC and LHP collaborations for very kindly allowing us to use their gauge configurations
and light-quark propagators for this project.

2 We have chosen to use the “particle physics” definition of the scattering length, as opposed to the “nuclear
physics” definition, which is opposite in sign.
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Effective range expansion:

Luscher

p cot δ(p) =
1

a
+

1

2
rp2 + ....

a is the scattering length 



Luscher Formula
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presented by Lüscher [2]. In eq. (1), L is the length of the spatial dimension in a cubically-
symmetric lattice. The energy eigenvalue En and its deviation from twice the rest mass of
the particle, ∆En, are related to the center-of-mass momentum pn, a solution of eq. (1), by

∆En ≡ En − 2m = 2
√

p2
n + m2 − 2m . (3)

In the absence of interactions between the particles, |p cot δ| = ∞, and the energy levels
occur at momenta p = 2πj/L, corresponding to single-particle modes in a cubic cavity.
Expanding eq. (1) about zero momenta, p ∼ 0, one obtains the familiar relation 2

∆E0 = − 4πa

mL3

[

1 + c1
a

L
+ c2

(
a

L

)2
]

+ O
(

1

L6

)
, (4)

1 We thank the MILC and LHP collaborations for very kindly allowing us to use their gauge configurations
and light-quark propagators for this project.

2 We have chosen to use the “particle physics” definition of the scattering length, as opposed to the “nuclear
physics” definition, which is opposite in sign.

3

Expansion at p~0 :  

a is the scattering length 

domain-wall [22–25] propagators generated by LHPC 1 at the Thomas Jefferson National
Laboratory (JLab).

This paper is organized as follows. In Section II we discuss Lüscher’s finite-volume method
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Energy level shift in finite volume:  

pn cot δ(pn) =
1

a
+ · · ·

c1 and c2 are universal constants

1

a
=

1

πL
S

(

p2
0L

2

4π2

)

+ · · ·



Technicalities

How well can we compute energy levels in LQCD?

Ground state: 

Relatively easy for mesons

Baryons are hard and get harder as their number grows

Excited states are more demanding but methods do exist

Theoretical background

Two body problems are well understood [Lucher]

Multi-mesons recently done 

Coupled channels: Works begin to appear [Lage et.al. arXiv:0905.0069]

More than two baryons: Work in progress.... [Luu arXiv:0810.2331v1]

Still a lot needs to be done!

[Beane et.al. PRD76;074507, 2007, Detmold et.al. PRD77:057502,2008]

http://arxiv.org/abs/0905.0069
http://arxiv.org/abs/0905.0069
http://arxiv.org/abs/0810.2331v1
http://arxiv.org/abs/0810.2331v1


I=2 Pion Scattering

• Physical point -- Lighter three point fit:            mπ a2 = -0.04196(12)

• Physical point -- Lighter two point fit:              mπ a2 = -0.04223(28)

• Physical point -- Quadratic fit (higher order):   mπ a2 = -0.0426(4)
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World results on I=2 π-π scattering 
lengths
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Three meson interaction

Three pion interaction is non-zero

Three kaon interaction vanishes
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Nucleon-Nucleon

3

mπ (MeV ) a(1S0) (fm) a(3S1) (fm)

353.7 ± 2.1 0.63 ± 0.50 (5-10) 0.63 ± 0.74 (5-9)

492.5 ± 1.1 0.65 ± 0.18 (6-9) 0.41 ± 0.28 (6-9)

593.0 ± 1.6 0.0 ± 0.5 (7-12) −0.2 ± 1.3 (7-12)

TABLE I: Scattering lengths in the 1S0 channel and in the
3S1 −

3D1 coupled channels. The uncertainty is statistical and
the fitting ranges are in parentheses. There is a systematic
error of ∼ 0.1 fm on each scattering length associated with the
truncation of the effective range expansion; i.e. the numbers
exhibited are for −1/p cot δ at the measured energy-splitting.

lengths at the heaviest pion mass are not inconsistent
with the lightest-mass quenched values of Ref. [1]. How-
ever, one should keep in mind the effects of quenching on
the infrared properties of the theory [21].

The lowest pion mass at which we have calculated is
at the upper limit of where we expect the EFT describ-
ing NN interactions to be valid [22, 23, 24, 25, 26, 27].
While some controversy remains regarding the details
of the NN EFT, in our present analysis, we have con-
strained the chiral extrapolation using BBSvK power-
counting [27] (≡KSW power-counting [25, 26]) and W
power-counting [22, 23, 24] in the 1S0-channel and BB-
SvK power-counting in the 3S1 −3D1 coupled channels.
The recent lattice QCD determinations of the light-quark
axial-matrix element in the nucleon by LHPC [28] and
its physical value are used to constrain the chiral expan-
sion of gA. Our lattice calculations of the nucleon mass
and pion decay constant [20] —as well as their physi-
cal values— are used to constrain their respective chi-
ral expansions. In addition to the quark-mass depen-
dence these three quantities contribute to the NN sys-
tems, there is dependence on the quark masses at next-
to-leading order (NLO) from pion exchange, and from
local four-nucleon operators that involve a single inser-
tion of the light-quark mass matrix, described by the
“D2” coefficients [6, 7, 8]. The results of this lattice
QCD calculation constrain the range of allowed values
for the D2’s, and consequently the scattering lengths in
the region between mπ ∼ 350 MeV and the chiral limit,
as shown in fig. 3 and fig. 4. With only one lattice point
at the edge of the regime of applicability of the EFT, a
prediction for the scattering lengths at the physical pion
mass is not possible: the experimental values of the scat-
tering lengths are still required for an extrapolation to
the chiral limit and naive dimensional analysis (NDA)
is still required to select only those operator coefficients
that are consistent with perturbation theory. The regions
plotted in the figures correspond to values of C0 – the
coefficient of the leading-order quark-mass independent
local operator – and D2 that fit the lattice datum and
the physical value, and are consistent with NDA; indeed
we have D2(Λ)m2

π/C0(Λ) ∼ ±0.10 in both channels (at

physical mπ), at a renormalization scale Λ ∼ 350 MeV.
In both channels the lightest lattice datum constrains the
chiral extrapolation to two distinct bands which are sen-
sitive to both the quark mass dependence of gA and the
sign of the D2 coefficient. As the lattice point used to
constrain the EFT is at the upper limits of applicabil-
ity of the EFT, we expect non-negligible corrections to
these regions from higher orders in the EFT expansion.
It is clear from fig. 3 and fig. 4 that even a qualitative
understanding of the chiral limit will require lattice cal-
culations at lighter quark masses.

FIG. 3: Allowed regions for the scattering length in the 1S0

channel as a function of the pion mass. The experimental
value of the scattering length and NDA have been used to
constrain the extrapolation in both BBSvK [25, 26, 27] and
W [22, 23, 24] power-countings at NLO.

FIG. 4: Allowed regions for the scattering length in the
3S1 −

3D1 coupled-channels as a function of the pion mass.
The experimental value of the scattering length and NDA
have been used to constrain the extrapolation in BBSvK [27]
power-counting at NLO. (W counting gives essentially iden-
tical results.)

Without the resources to perform similar lattice QCD
calculations in different volumes, and observing that
most energy-splitting are positive, we have assumed that
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heavy pions



Signal to Noise ratio for correlation 
functions (mesons)

For pseudo-scalar mesons the signal does not deteriorate at large time

pxpxpxpxpxpx

C(t) = 〈m(t)m̄(0)〉 ∼ Ae−Mmt

pxpxpxpxpxpx

var(C(t)) = 〈mm̄(t)mm̄(0)〉 ∼ Ae−2Mmt + Be−2Mπt

pxpxpxpxpxpx

StoN =
C(t)√

var(C(t))
∼ Ae−(Mm−Mπ)t



Signal to Noise ratio for correlation 
functions (baryons)

The signal to noise ratio drops exponentially with time

The signal to noise ratio drops exponentially with decreasing pion mass

For two baryons: StoN(2N) = StoN(1N)2

var(C(t)) = 〈NN̄(t)NN̄(0)〉 ∼ Ae−2MN t + Be−3mπt

C(t) = 〈N(t)N̄(0)〉 ∼ Ee−MN t

StoN =
C(t)√

var(C(t))
=∼ Ae−(MN−3/2mπ)t



High Statistics runs

Improved Wilson fermions on anisotropic lattices

Single pion mass: 390MeV

Very high statistics (~300x103 correlators)

Goals

Get clean signals

Investigate methods of extracting masses from correlation functions

Check feasibility of 3 body calculations



Signal to Noise Ratio

Exponential loss of signal at large time

  Slopes become larger as baryon number increases 
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Exponential Slope of the variance
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Energy Shifts
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Scattering Lengths
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Nucleon-Nucleon Interactions: Projected errors

Errors on scattering nucleon-nucleon scattering length as function of 
computational resources

Only cost for correlation function calculation presented

Includes expected speedup from eigCG [Stathopoulos, KO 2007]
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Summary

Mesonic (pseudo-scalar) many body systems are successfully studied 
in LQCD

Scattering lengths 

Three body interaction

Baryons are hard

Statistical noise require high statistics calculations

Advent of peta-scale computing together with new algorithmic 
developments will provide interesting results over the next few years


